题目
( 2023年高考天津卷第19题 )已知数列$\left\{a_{n}\right\}$是等差数列$a_{2}+a_{5}=16, a_{5}-a_{3}=4$.
- 求$\{a_{n}\}$的通项公式和$\displaystyle\sum_{i=2^{n-1}}^{2^{n}-1} a_{i}$.
- 已知$\{b_{n}\}$为等比数列, 对于任意$k \in \mathbf{N}^{*}$, 若$2^{k-1} \leqslant n \leqslant 2^{k}-1$, 则$b_{k} < a_{n} < b_{k+1}$.
(i). 当$k \geqslant 2$时,求证:$2^{k}-1 < b_{k} < 2^{k}+1$;
(ii). 求$\left\{b_{n}\right\}$的通项公式及其前$n$项和.
解析
- 设 $\{a_n\}$ 的公差为 $d$ ,则
$$\left\{\begin{array}{l}
a_2+a_5=2 a_1+5 d=16, \\\\
a_5-a_3=2 d=4,
\end{array}\right.$$
解得 $a_1=3, d=2$. 所以 $a_n=2 n+1$.
所以 $\{a_n\}$ 的前$n$项和
$$S_n=3 n+\frac{n(n-1)}{2} \times 2=n^2+2 n.$$
所以$$\begin{aligned}\sum_{i=2^{n-1}}^{2^n-1} a_i&=S_{2^n-1}-S_{2^{n-1}-1}\\\\
&=\left[\left(2^n-1\right)^2+2\left(2^n-1\right)\right]-\left[\left(2^{n-1}-1\right)^2-2\left(2^{n-1}-1\right)\right]\\\\
&=3 \cdot 4^{n-1}.\end{aligned}$$ - (i).因为 $a_n=2 n+1$ ,所以数列$\{a_n\}$单调递增.当 $2^{k-1} \leqslant n \leqslant 2^k-1$ 时,$$\begin{aligned}
\left(a_n\right)_{\min }&=a_{2^{k-1}}=2^k+1,\\\\
\left(a_n\right)_{\max }&=a_{2 k-1}=2^{k+1}-1.
\end{aligned}$$所以
$$\begin{aligned}& b_k < a_n < b_{k+1} \\\\
\implies& \left(a_n\right)_{\min } > b_k \text { 且 } \left(a_n\right)_{\max } < b_{k+1} \\\\
\implies& 2^k+1 > b_k \text { 且 } 2^{k+1}-1 < b_{k+1} \\\\
\implies& 2^k+1 > b_k \text { 且 } 2^k-1 < b_k(k \geqslant 2) \end{aligned}$$所以$k\geqslant 2 $ 时,
$$\begin{equation}
2^k-1 < b_k < 2^k+1\tag{1}
\end{equation}$$
(ii)设 $\left\{b_n\right\}$公比为$q$. 由(1) 式
\begin{align*}
2^{k+1}-1 < b_{k+1} < 2^{k+1}+1\tag{2}
\end{align*}
由(1),(2)两式得
$$\dfrac{2^{k+1}-1}{2^k+1} < \dfrac{b_{k+1}}{b_k} < \dfrac{2^{k+1}+1}{2^k-1}$$
即对$\forall k \geqslant 2$, 有
$$\begin{equation}2-\dfrac{3}{2^k+1} < q < 2+\dfrac{3}{2^k-1}\tag{3}\end{equation}$$
- 若$q > 2,$则$$q < 2+\dfrac{3}{2^k-1} \iff 2^k < \dfrac{q+1}{q-2}$$
取 $k > \log _2 \dfrac{q+1}{q-2}$, 则 $2^k > \dfrac{q+1}{q-2}$矛盾,故 $q \leqslant 2$. - 若 $0 < q < 2$, 则
$$q > 2-\dfrac{3}{2^k+1} \iff 2^k < \dfrac{1+q}{2-q}$$
取 $k > \log _2 \dfrac{1+q}{2-q}$, 则 $2^k > \dfrac{1+q}{2-q}$ 矛盾,故 $q \geqslant 2$.
所以 $q=2$.
设 $b_k=b_1 \cdot 2^{k-1}\left(b_1 > 0\right)$, 由(1)式得
$$2^k-1 < b_1 \cdot 2^{k-1} < 2^k+1$$
即对$\forall k \geqslant 2$, 有
$$\begin{equation}
2-\dfrac{1}{2^{k-1}} < b_1 < 2+\dfrac{1}{2^{k-1}}\tag{4}
\end{equation}$$ - 若$b_1 > 2$,则
$$b_1 < 2+\dfrac{1}{2^{k-1}} \iff 2^k < \dfrac{2}{b_1-2}$$
取$k > \log _2 \dfrac{2}{b_1-2}$ ,有$2^k > \dfrac{2}{b_1-2}$, 矛盾.故 $b_1 \leqslant 2$ - 若$0 < b_1 < 2$,则
$$b_1 > 2-\dfrac{1}{2^{k-1}} \iff 2^k < \dfrac{2}{2-b_1}$$
取 $k > \log _2 \dfrac{2}{2-b_1}$ ,有 $2^k > \dfrac{2}{2-b_1}$ ,矛盾.故 $b_1 \geqslant 2$ .
所以$b_1=2$,所以$b_n=2^n$.
所以$\{b_n\}$的前$n$项和为$\dfrac{2-2^{n+1}}{1-2}=2^{n+1}-2.$注解
- 由(3)式数列$\{ 2-\dfrac{3}{2^k+1}\}$单调递增且趋近于2, 数列$\{ 2+\dfrac{3}{2^k-1}\}$单调递减且趋近于2,可得$q=2$.
- 由(4)式数列$\{ 2-\dfrac{1}{2^{k-1}}\}$单调递增且趋近于2, 数列$\{ 2+\dfrac{1}{2^{k-1}}\}$单调递减且趋近于2,可得$b_1=2$.